Rigidité, groupe fondamental et dynamique / Martine Babillot, Renato Feres, Abdelghani Zeghib

Auteur: Babillot, Martine (1959-2003) - AuteurCo-auteur: Feres, Renato (1962-) - Auteur ; Zeghib, Abdelghani (1959-) - AuteurAuteur secondaire : Breuillard, Emmanuel (1977-) - CollaborateurType de document: MonographieCollection: Panoramas et synthèses ; 13Langue: anglais ; françaisPays: FranceÉditeur: Paris : Société Mathématique de France, 2002Description: 1 vol. (XIV-188 p.) : fig. ; 24 cm ISBN: 9782856291344 ; br. Résumé: This volume presents recent progress in the domain of geometric structures and group actions. M.Babillot shows the contribution of dynamics and ergodic theory in the analysis of the quantitative version of the Oppenheim conjecture or for discrete non-elementary isometry groups of non-compact manifolds with negative curvature. R.Feres introduces Gromov's approach to rigid geometric structures, gives various Zimmer-type super-rigidity results and presents a very nice theorem of Gromov concerning the fundamental group of analytic manifolds equipped with a unimodular A-rigid structure. A.Zeghib demonstrates how a clever use of partially algebraic sets and of control theory leads to a new simple proof of the dense-open orbit theorem. (Zentralblatt).Bibliographie: Références bibliographiques en fin de contributions. Sujets MSC: 22-06 Topological groups, Lie groups -- Proceedings, conferences, collections, etc
37-06 Dynamical systems and ergodic theory -- Proceedings, conferences, collections, etc
En-ligne: Sommaire
Location Call Number Status Date Due
Couloir 02067-01 / Séries Panor 13 (Browse Shelf) Available

Références bibliographiques en fin de contributions

This volume presents recent progress in the domain of geometric structures and group actions. M.Babillot shows the contribution of dynamics and ergodic theory in the analysis of the quantitative version of the Oppenheim conjecture or for discrete non-elementary isometry groups of non-compact manifolds with negative curvature. R.Feres introduces Gromov's approach to rigid geometric structures, gives various Zimmer-type super-rigidity results and presents a very nice theorem of Gromov concerning the fundamental group of analytic manifolds equipped with a unimodular A-rigid structure. A.Zeghib demonstrates how a clever use of partially algebraic sets and of control theory leads to a new simple proof of the dense-open orbit theorem. (Zentralblatt)

There are no comments for this item.

Log in to your account to post a comment.
Languages: English | Français | |