Advanced topics in computational number theory / Henri Cohen

Auteur: Cohen, Henri (1947-) - AuteurType de document: MonographieCollection: Graduate texts in mathematics ; 193Langue: anglaisPays: Etats UnisÉditeur: New York : Springer, cop. 2000Description: 1 vol. (XV-578 p.) ; 25 cm ISBN: 0387987274 ; rel. Résumé: The present book addresses a number of specific topics in computational number theory whereby the author is not attempting to be exhaustive in the choice of subjects. The book is organized as follows. Chapters 1 and 2 contain the theory and algorithms concerning Dedekind domains and relative extensions of number fields, and in particular the generalization to the relative case of the round 2 and related algorithms. Chapters 3, 4, and 5 contain the theory and complete algorithms concerning class field theory over number fields. The highlights are the algorithms for computing the structure of (Z_K/m)^*, of ray class groups, and relative equations for Abelian extensions of number fields using Kummer theory. Chapters 1 to 5 form a homogeneous subject matter which can be used for a 6 months to 1 year graduate course in computational number theory. The subsequent chapters deal with more miscellaneous subjects. Written by an authority with great practical and teaching experience in the field, this book together with the author's earlier book will become the standard and indispensable reference on the subject. (Source : Springer).Bibliographie: Bibliogr. p. 549-555. Index. Sujets MSC: 11Y40 Number theory -- Computational number theory -- Algebraic number theory computations
11-02 Number theory -- Research exposition (monographs, survey articles)
11Y16 Number theory -- Computational number theory -- Algorithms; complexity
11R37 Number theory -- Algebraic number theory: global fields -- Class field theory
En-ligne: Springerlink
Location Call Number Status Date Due
Salle R 08249-01 / 11 COH (Browse Shelf) Available

Bibliogr. p. 549-555. Index

The present book addresses a number of specific topics in computational number theory whereby the author is not attempting to be exhaustive in the choice of subjects. The book is organized as follows. Chapters 1 and 2 contain the theory and algorithms concerning Dedekind domains and relative extensions of number fields, and in particular the generalization to the relative case of the round 2 and related algorithms. Chapters 3, 4, and 5 contain the theory and complete algorithms concerning class field theory over number fields. The highlights are the algorithms for computing the structure of (Z_K/m)^*, of ray class groups, and relative equations for Abelian extensions of number fields using Kummer theory. Chapters 1 to 5 form a homogeneous subject matter which can be used for a 6 months to 1 year graduate course in computational number theory. The subsequent chapters deal with more miscellaneous subjects. Written by an authority with great practical and teaching experience in the field, this book together with the author's earlier book will become the standard and indispensable reference on the subject. (Source : Springer)

There are no comments for this item.

Log in to your account to post a comment.
Languages: English | Français | |