Éléments de théorie des graphes / Alain Bretto, Alain Faisant, François Hennecart

Auteur: Bretto, Alain - AuteurCo-auteur: Faisant, Alain (1945-) - Auteur ; Hennecart, François (1966-) - AuteurType de document: Monographie Collection: Collection IRIS Langue: françaisPays: FranceÉditeur: Paris : Springer, DL 2013, cop. 2012Description: 1 vol. (XIX-371 p.) : fig. ; 24 cm ISBN: 9782817802800 ; br. Résumé: Ce livre a pour objectif d’introduire le lecteur à la théorie des graphes. En quelques décennies, cette théorie est devenue l’un des domaines les plus féconds et les plus dynamiques des mathématiques et de l’informatique. Elle permet de représenter un ensemble complexe d’objets en exprimant les relations entre les éléments : réseaux de communication, circuits, etc. Foisonnante, cette théorie se situe aujourd’hui au frontières de domaines tels que la topologie, l’algèbre, la géométrie, l’algorithmique et ses applications. Après avoir introduit le langage de base [ch.1], les auteurs présentent les différents types de graphes (bipartis, arbres, arborescences, eulériens et hamiltoniens) [ch.2], puis les relations entre les graphes et les structures de données algorithmique [ch.3]. Les auteurs exposent ensuite la connexité et les flots [ch.4], puis la notion de planarité [ch.5]. Ce sont ensuite les aspects algébriques élémentaires de la théorie des graphes qui sont étudiés [ch.6], puis les colorations et les couplages de graphes [ch.7 et 8]. L’avant dernier chapitre aborde la théorie spectrale des graphes [ch. 9], avant de laisser place à une analyse consacrée aux développements récents de la théorie (polynômes de Tutte, matroïdes, hypergraphes, etc.). Ce livre, accessible aux étudiants et élèves ingénieurs dès la Licence, intéressera aussi tous ceux ayant à cœur de d’approfondir leurs connaissance par une approche non standard à la théorie des graphes, et souhaitant s’informer tant les aspects algébriques et topologiques que sur les derniers développement de la théorie. Le but étant d’amener le lecteur au seuil de la recherche dans ce domaine. (Source : Springer).Bibliographie: Bibliogr. p. 357. Index. Sujets MSC: 68-01 Computer science -- Instructional exposition (textbooks, tutorial papers, etc.)
05-01 Combinatorics -- Instructional exposition (textbooks, tutorial papers, etc.)
68R10 Computer science -- Discrete mathematics in relation to computer science -- Graph theory (including graph drawing)
05C85 Combinatorics -- Graph theory -- Graph algorithms
En-ligne: Sommaire | Zentralblatt
Location Call Number Status Date Due
Salle E 12304-01 / Manuels BRE (Browse Shelf) Available

Bibliogr. p. 357. Index

Ce livre a pour objectif d’introduire le lecteur à la théorie des graphes. En quelques décennies, cette théorie est devenue l’un des domaines les plus féconds et les plus dynamiques des mathématiques et de l’informatique. Elle permet de représenter un ensemble complexe d’objets en exprimant les relations entre les éléments : réseaux de communication, circuits, etc. Foisonnante, cette théorie se situe aujourd’hui au frontières de domaines tels que la topologie, l’algèbre, la géométrie, l’algorithmique et ses applications. Après avoir introduit le langage de base [ch.1], les auteurs présentent les différents types de graphes (bipartis, arbres, arborescences, eulériens et hamiltoniens) [ch.2], puis les relations entre les graphes et les structures de données algorithmique [ch.3]. Les auteurs exposent ensuite la connexité et les flots [ch.4], puis la notion de planarité [ch.5]. Ce sont ensuite les aspects algébriques élémentaires de la théorie des graphes qui sont étudiés [ch.6], puis les colorations et les couplages de graphes [ch.7 et 8]. L’avant dernier chapitre aborde la théorie spectrale des graphes [ch. 9], avant de laisser place à une analyse consacrée aux développements récents de la théorie (polynômes de Tutte, matroïdes, hypergraphes, etc.). Ce livre, accessible aux étudiants et élèves ingénieurs dès la Licence, intéressera aussi tous ceux ayant à cœur de d’approfondir leurs connaissance par une approche non standard à la théorie des graphes, et souhaitant s’informer tant les aspects algébriques et topologiques que sur les derniers développement de la théorie. Le but étant d’amener le lecteur au seuil de la recherche dans ce domaine. (Source : Springer)

There are no comments for this item.

Log in to your account to post a comment.
Languages: English | Français | |