LDR 02426    a2200337   4500
010    _a9780521337175
       _bbr.
090    _a16203
101    _aeng
102    _aGB
100    _a20170614              frey50       
200    _bM
       _aAn introduction to Hilbert space
       _fNicholas Young
205    _a14th printing 2011
210    _cCambridge University Press
       _aCambridge
       _dcop. 1988
215    _a1 vol. (239 p.)
       _d24
225    _9178197
       _aCambridge mathematical textbooks
300    _aThis interesting textbook, in its first eight chapters, presents a very clear and elegant exposition of the basic notions of the theory of Hilbert space. Chapters 9 to 11 describe applications to Sturm-Liouville systems, Green functions and eigenfunction expansions. Of special interest is the material and treatment in Chapters 12–16: It is beautiful and relatively recent mathematics, dealing with positive operators, contractions, Hardy spaces, Hankel operators, applications to complex analysis and engineering, and the theorems of Parrot, Nehari, Kronecker and Adamyan-Arov-Kreĭn. The first half of the book is accessible to undergraduate students, and the second half may be used for graduate courses and would also be of interest to some electrical engineers. (MSN)
320    _aIndex
410    _cCambridge
       _tCambridge mathematical textbooks
       _9183090
676    _a2010
686    _20
       _9164282
       _a46-01
       _bFunctional analysis
       _xInstructional exposition (textbooks, tutorial papers, etc.)
686    _20
       _9164334
       _a46C05
       _bFunctional analysis -- Inner product spaces and their generalizations, Hilbert spaces
       _xHilbert and pre-Hilbert spaces: geometry and topology
686    _20
       _9164333
       _a46Cxx
       _bFunctional analysis
       _xInner product spaces and their generalizations, Hilbert spaces
686    _20
       _9164478
       _a47A20
       _bOperator theory -- General theory of linear operators
       _xDilations, extensions, compressions
686    _20
       _9164506
       _a47B06
       _bOperator theory -- Special classes of linear operators
       _xRiesz operators; eigenvalue distributions; approximation numbers, s-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
700    _4070
       _aYoung
       _bNicholas
       _9183089
856    _uhttp://www.ams.org/mathscinet-getitem?mr=949693
       _zMSN
856    _uhttps://zbmath.org/?q=an:0645.46024
       _zzbMath
905    _aaw
       _b2017
906    _aaw
       _b2017-07-03
001     16203
995    _f12401-01
       _xachat Ebsco
       _918499
       _cCMI
       _20
       _k46 YOU
       _o0
       _eSalle R
       _z46.62
       _bCMI
Languages: English | Français | |