LDR 02683     2200373   4500
010    _a9783319694337
       _bbr.
011    _a0075-8434
090    _a16639
101    _aeng
102    _aCH
100    _a20150720              frey50       
200    _aAlgebraic topology
       _bM
       _fNguyen H.V. Hung, Lionel Schwarz, editors
       _eVIASM 2012-2015
210    _aCham
       _cSpringer
       _d2017
215    _a1 vol. (VII-178 p.)
       _d24
225    _9179204
       _aLecture notes in mathematics
       _v2194
       _x0075-8434
300    _aExpanded papers from the courses held at the Vietnam Institute for Advanced Study in Mathematics (VIASM), Hanoi, 2012–2015
320    _aBibliogr. en fin de chapitres
330    _aPublisher’s description: Held during algebraic topology special sessions at the Vietnam Institute for Advanced Studies in Mathematics (VIASM, Hanoi), this set of notes consists of expanded versions of three courses given by G. Ginot, H.-W. Henn and G. Powell. They are all introductory texts and can be used by PhD students and experts in the field.

Among the three contributions, two concern stable homotopy of spheres: Henn focusses on the chromatic point of view, the Morava K(n)-localization and the cohomology of the Morava stabilizer groups. Powell’s chapter is concerned with the derived functors of the destabilization and iterated loop functors and provides a small complex to compute them. Indications are given for the odd prime case. Providing an introduction to some aspects of string and brane topology, Ginot’s contribution focusses on Hochschild homology and its generalizations. It contains a number of new results and fills a gap in the literature.
410    _9132706
       _aSpringer
       _tLecture notes in mathematics
       _x0075-8434
676    _a2010
686    _20
       _9165070
       _a55-06
       _bAlgebraic topology
       _xProceedings, conferences, collections, etc.
686    _20
       _9165111
       _a55P50
       _bAlgebraic topology -- Homotopy theory
       _xString topology
686    _20
       _9165129
       _a55Q45
       _bAlgebraic topology -- Homotopy groups
       _xStable homotopy of spheres
686    _20
       _9165158
       _a55S10
       _bAlgebraic topology -- Operations and obstructions
       _xSteenrod algebra
686    _20
       _9162466
       _a18Gxx
       _bCategory theory; homological algebra
       _xHomological algebra
702    _4340
       _aHưng
       _bNguyễn H.V.
       _9183219
702    _4340
       _aSchwarz
       _bLionel
       _f1953-
       _9183220
856    _uhttps://link.springer.com/book/10.1007/978-3-319-69434-4
       _zSpringer
856    _uhttps://mathscinet.ams.org/mathscinet-getitem?mr=3752659
       _zMSN
856    _uhttps://zbmath.org/?q=an%3A06811266
       _zzbMath
905    _aaw
       _b2018
906    _aaw
       _b2018-07-27
001     16639
995    _f12496-01
       _xachat Ebsco
       _918655
       _cCMI
       _20
       _k55-06 HUN
       _o0
       _eSalle R
       _z28.56
       _bCMI
Languages: English | Français | |