LDR 02379     2200349   4500
010    _a9783319676111
       _bbr.
011    _a0075-8434
090    _a16640
101    _aeng
102    _aCH
100    _a20140505              frey50       
200    _aCauchy problem for differential operators with double characteristics
       _bM
       _fTatsuo Nishitani
       _enon-effectively hyperbolic characteristics
210    _aCham
       _cSpringer
       _d2017
215    _a1 vol. (VIII-211 p.)
       _d24
225    _aLecture notes in mathematics
       _x0075-8434
       _v2202
       _9179204
320    _aBibliogr. p. 203-207. Index
330    _aPublisher’s description: Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.
410    _9132706
       _aSpringer
       _tLecture notes in mathematics
       _x0075-8434
676    _a2010
686    _20
       _9163496
       _a35-02
       _bPartial differential equations
       _xResearch exposition (monographs, survey articles)
686    _20
       _9163685
       _a35L15
       _bPartial differential equations -- Hyperbolic equations and systems
       _xInitial value problems for second-order hyperbolic equations
686    _20
       _9163688
       _a35L30
       _bPartial differential equations -- Hyperbolic equations and systems
       _xInitial value problems for higher-order hyperbolic equations
686    _20
       _9163470
       _a34L20
       _bOrdinary differential equations -- Ordinary differential operators
       _xAsymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions
686    _20
       _9163483
       _a34M40
       _bOrdinary differential equations -- Differential equations in the complex domain
       _xStokes phenomena and connection problems (linear and nonlinear)
700    _4070
       _aNishitani
       _bTatsuo
       _f1950-
       _9176703
856    _uhttps://zbmath.org/?q=an%3A06783948
       _zZbMath
856    _uhttps://mathscinet.ams.org/mathscinet-getitem?mr=3726883
       _zMSN
856    _uhttps://link.springer.com/book/10.1007%2F978-3-319-67612-8
       _zSpringer
905    _aaw
       _b2018
906    _aaw
       _b2018-08-20
001     16640
995    _f12497-01
       _xachat Ebsco
       _918656
       _cCMI
       _20
       _k35 NIS
       _o0
       _eSalle R
       _z28.56
       _bCMI
Languages: English | Français | |