LDR 02744     2200373   4500
010    _a9783319790411
       _bbr.
011    _a1154-483X
090    _a17007
101    _aeng
102    _aCH
100    _a20120611              frey50       
200    _aThe gradient discretisation method
       _bM
       _fJérôme Droniou, Robert Eymard, Thierry Gallouët, ... [et al.]
210    _aCham
       _cSpringer
       _d2002
215    _a1 vol. (XXIV-497 p.)
       _cill. en noir et en coul.
       _d24
225    _9170897
       _aMathématiques et applications
       _v82
       _x1154-483X
320    _aBibliogr. p. 487-493. Index
330    _aPublisher’s description: This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray-Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes
410    _9170896
       _aSpringer (suite d'Ellipses 1-9)
       _tMathématiques et applications
       _x1154-483X
676    _a2010
686    _20
       _9165689
       _a65-02
       _bNumerical analysis
       _xResearch exposition (monographs, survey articles)
686    _20
       _9165790
       _a65M12
       _bNumerical analysis -- Partial differential equations, initial value and time-dependent initial-boundary value problems
       _xStability and convergence of numerical methods
686    _20
       _9165791
       _a65M15
       _bNumerical analysis -- Partial differential equations, initial value and time-dependent initial-boundary value problems
       _xError bounds
686    _20
       _9165800
       _a65M60
       _bNumerical analysis -- Partial differential equations, initial value and time-dependent initial-boundary value problems
       _xFinite elements, Rayleigh-Ritz and Galerkin methods, finite methods
700    _9180152
       _aDroniou
       _bJérôme
       _f1975-
       _4070
701    _4070
       _9178534
       _aEymard
       _bRobert
       _f1957-
701    _4070
       _9169811
       _aGallouët
       _bThierry
       _f1953-
701    _4070
       _aGuichard
       _bCindy
       _9183287
701    _4070
       _9169976
       _aHerbin
       _bRaphaèle
856    _uhttps://zbmath.org/?q=an%3A06897811
       _zZentralblatt
856    _uhttps://www.springer.com/gp/book/9783319790411
       _zSpringer
905    _aaw
       _b2018
906    _aaw
       _b2018-11-26
995    _f12532-01
       _xachat
       _918692
       _cCMI
       _20
       _kSéries SMA
       _o0
       _eCouloir
       _bCMI
001     17007
Languages: English | Français | |